Facultatif: 3)4)5) de l'exercice 2 et à partir du I)2) de l'exercice 3.

Exercice 1. Soit $n \in \mathbb{N}^*$. On note P_n le polynôme de $\mathbb{C}[X]$ défini par

$$P_n(X) = \frac{1}{2i} \left((X+i)^{2n+1} - (X-i)^{2n+1} \right).$$

- 1. Vérifier que $P_1 \in \mathbb{R}_2[X]$ et $P_2 \in \mathbb{R}_4[X]$.
- 2. Montrer que $P_n \in \mathbb{C}_{2n}[X]$. Donner son degré et son coefficient dominant.
- 3. Soit $a \in \mathbb{C}$. Montrer que

$$a \text{ racine de } P_n \Leftrightarrow \exists k \in \llbracket 1, 2n \rrbracket, \ a \left(e^{2ik\pi/(2n+1)} - 1 \right) = i \left(e^{2ik\pi/(2n+1)} + 1 \right).$$

- 4. Déterminer les racines de P_n , et vérifier qu'elles sont réelles.
- 5. En développant P_n , déterminer un polynôme Q_n de degré n à coefficients réels tel que $P_n(X) = Q_n(X^2)$.
- 6. Montrer l'unicité d'un tel polynôme Q_n .
- 7. Déterminer les racines de Q_n en fonction de celles de P_n .
- 8. On considère $S_n = \sum_{k=1}^n \frac{1}{\tan^2\left(\frac{k\pi}{2n+1}\right)}$. À l'aide de la question précédente, montrer que $S_n = \frac{n(2n-1)}{3}$.
- 9. Montrer que $\forall x \in \left]0, \frac{\pi}{2}\right[, \frac{1}{\tan^2 x} \leqslant \frac{1}{x^2} \leqslant 1 + \frac{1}{\tan^2 x}.$
- 10. En déduire la valeur de la somme $\sum_{k=1}^{+\infty} \frac{1}{k^2}$.

Exercice 2. Structure des solutions de l'équation de Pell-Fermat.

Dans la suite, d désigne un entier naturel tel que \sqrt{d} soit irrationnel. On considère l'équation de Pell-Fermat :

(E):
$$x^2 - dy^2 = 1$$
,

d'inconnues $x, y \in \mathbb{Z}$. On note \mathcal{S} l'ensemble des solutions de (E). Structure de l'ensemble des solutions. On note $\mathbb{Z}[\sqrt{d}] = \{x + y\sqrt{d}, x, y \in \mathbb{Z}\}.$

- 1) a) Montrer brièvement que $\mathbb{Z}[\sqrt{d}]$ est un sous-anneau de \mathbb{R} .
 - b) Soit $z \in \mathbb{Z}[\sqrt{d}]$. Montrer qu'il existe un unique couple $(x,y) \in \mathbb{Z}^2$ tel que $z = x + y\sqrt{d}$.
 - c) Soient $x, y \in \mathbb{Z}$ et $z = x + y\sqrt{d}$. On pose $\overline{z} = x y\sqrt{d}$ et $N(z) = z\overline{z} = x^2 dy^2$. Montrer que

$$\forall z, z' \in \mathbb{Z}[\sqrt{d}], \quad \overline{zz'} = \overline{z} \, \overline{z'} \text{ et } N(zz') = N(z)N(z').$$

- d) Soit $z \in \mathbb{Z}[\sqrt{d}]$. Montrer que z est inversible dans l'anneau $\mathbb{Z}[\sqrt{d}]$ si et seulement si $N(z) = \pm 1$.
- 2) a) Justifier que l'ensemble $U = \{z \in \mathbb{Z}[\sqrt{d}] \mid N(z) = 1\}$ des éléments de norme 1 forme un groupe et que S est en bijection canonique avec ce groupe U (il s'agit d'expliciter une bijection naturelle).

Pour $z = x + y\sqrt{d} \in U$, à quelles solutions de (E) correspondent les nombres 1/z, -z et -1/z?

- b) Soit $z = x + y\sqrt{d} \in U$. Montrer que z > 1 si et seulement si $x \ge 1$ et $y \ge 1$.
- 3) En utilisant l'alternative sur les sous-groupes de $(\mathbb{R}, +)$, montrer que tout sous-groupe multiplicatif G de (\mathbb{R}_+^*, \times) est soit dense dans \mathbb{R}_+^* , soit monogène, c'est-à-dire qu'il existe $\delta > 0$ tel que $G = \{\delta^n, n \in \mathbb{Z}\}$.
- 4) On suppose, jusqu'à la fin de cette partie que (E) possède une solution non triviale, c'est-à-dire différente de $(\pm 1,0)$. On pose $H=U\cap]1,+\infty[$.
 - a) Montrer que H est non vide.
 - **b)** Montrer qu'il existe $\delta > 1$ tel que $H = \{\delta^n, n \in \mathbb{N}^*\}$.
 - c) Soit $x_0 \ge 1$ et $y_0 \ge 1$ tels que $\delta = x_0 + y_0 \sqrt{d}$. Montrer que (x_0, y_0) est une solution de (E), appelée solution fondamentale, et exprimer les autres solutions en fonction de x_0 et y_0 .
- 5) Déterminer la solution fondamentale lorsque d=2.

Exercice 3. Approximations rationnelles de nombres algébriques.

I. Mauvaises approximations rationnelles des nombres algébriques.

On dit qu'un nombre $\theta \in \mathbb{R}$ est algébrique s'il existe un polynôme P non nul à coefficients entiers dont il est racine, c'est-à-dire vérifiant $P(\theta) = 0$.

Si θ est algébrique, parmi les polynômes non nuls à coefficients entiers dont il est racine, on en note P_{θ} un quelconque de degré minimal.

- 1) Préliminaires
 - a) Montrer que tout nombre rationnel est algébrique, et donner un nombre algébrique irrationnel.
 - b) Montrer que $\theta \in \mathbb{R}$ est algébrique si et seulement si θ est racine d'un polynôme non nul unitaire de $\mathbb{Q}[X]$.

- 2) On considère à présent θ irrationnel et algébrique. On note $P_{\theta} = \sum_{k=0}^{d} a_k X^k$, avec $d \ge 2$ le degré de P.
 - a) Montrer que P_{θ} n'admet aucune racine rationnelle.
 - **b)** En déduire que pour tous $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, on a $\left| P_{\theta} \left(\frac{p}{q} \right) \right| \geqslant \frac{1}{q^d}$.
 - c) Soit [a, b] un segment de \mathbb{R} . Montrer que si P est une fonction polynomiale, il existe une constante K tel que P soit K-lipschitzienne sur [a, b].
 - **d)** Montrer qu'il existe une constante C>0 que $\forall (p,q)\in\mathbb{Z}\times\mathbb{N}^*, \quad \left|\theta-\frac{p}{q}\right|\leqslant 1\Rightarrow \left|\theta-\frac{p}{q}\right|\geqslant \frac{C}{q^d}.$
 - e) En déduire qu'il existe une constante C' > 0 telle que $\forall (p,q) \in \mathbb{Z} \times \mathbb{N}^*, \quad \left| \theta \frac{p}{q} \right| \geqslant \frac{C'}{q^d}.$
- II. Application: Transcendance d'un nombre de Liouville.
 - 1) Pour $n \in \mathbb{N}$, on note $u_n = \sum_{k=1}^n \frac{1}{10^{k!}}$. Montrer que (u_n) converge.

On note $L = \sum_{k=1}^{+\infty} \frac{1}{10^{k!}}$ sa limite.

- 2) Expliciter sans justifier les 10 premiers chiffres du développement décimal de L.
- 3) Montrer que pour $n \le N$. $\sum_{k=n}^{N} \frac{1}{10^{k!}} \le \frac{1}{9 \times 10^{n!-1}}$.

En déduire que $\forall n \in \mathbb{N}, \quad |u_n - L| \leq \frac{1}{9 \times 10^{(n+1)!-1}}.$

- 4) Que dire du développement décimal d'un nombre rationnel? En déduire que L est irrationnel.
- $\mathbf{5}$) Montrer que L est transcendant, c'est-à-dire que L n'est pas un nombre algébrique.
- III. Application à l'étude d'une suite.
- 1) En utilisant une propriété de convexité/concavité, montrer que $\forall x \in \left[0, \frac{\pi}{2}\right], \sin x \geqslant \frac{2x}{\pi}$.
- 2) Montrer que $\frac{1}{n^3 \sin(\sqrt{2}\pi n)} \to 0$

Exercice 4. \bigstar *ENS 2023.* Soit G un groupe fini. Si X et Y sont des parties non vides de G, on pose $X^{-1} = \{x^{-1}, x \in X\}$ et $XY = \{xy, (x, y) \in X \times Y\}$. On suppose que |XX| < 2|X|. Montrer que $XX^{-1} = X^{-1}X$.

Exercice 5. \bigstar ENS 2021. Soit $A \in \mathcal{M}_n(\mathbb{R})$ à coefficients positifs. Pour $i, j \in [1, n]$ et $k \in \mathbb{N}^*$, on note A_{ij}^k le coefficient d'indices (i, j) de A^k . Pour $i \in [1, n]$, on pose $d_i = \operatorname{pgcd}\{k \mid A_{ii}^k > 0\}$.

- 1. On suppose $\exists k, \forall i, j, A_{ij}^k > 0$. Montrer que $d_1 = 1$.
- **2.** On suppose $\forall i, j, \exists k, A_{ij}^{\vec{k}} > 0$. Montrer que les d_i sont égaux.
- **3.** On suppose $\forall i, j, \exists k, A_{ij}^k > 0$, montrer que si $d_1 = 1$, alors $\exists k, \forall i, j, A_{ij}^k > 0$.

Exercice 6. \bigstar *ENS PLSR 2025.* On pose $S = \{(x, y, z) \in \mathbb{N}^{*3} \mid x \le y \le z \text{ et } x^2 + y^2 + z^2 = 3xyz\}.$

- 1. Déterminer les éléments de S vérifiant x = y ou y = z.
- **2.** Montrer qu'une infinité d'éléments de S vérifient x=1.
- **3.** On pose $f:(x,y,z)\mapsto (y,z,3yz-x)$ et $g:(x,y,z)\mapsto (x,z,3xz-y)$.

Montrer S est l'ensemble des images de (1,1,1) par toutes les composées de f et g.

Indications Exercice 3.

- I. 2) a) Dans le cas contraire, contredire la minimalité du degré de P_{θ} .
 - b) Mettre la quantité $P_{\theta}(\frac{p}{q})$ sur un dénominateur commun.
 - c) Pour la première partie, $f(y) f(x) = \int_x^y f'(t) dt$. Pour la seconde partie, noter $c = \max(|a|, |b|)$, et majorer |P'(x)| par une constante (qui ne dépend pas de x).
 - d) Utiliser la question précédente.
- II. 3) Pour la deuxième partie, majorer $|u_n u_N|$, pour $N \ge n$, et faire tendre N vers $+\infty$.
- 4) Par l'absurde, si qL est un entier, alors $|qu_n qL|$ est un multiple de $\frac{1}{10^{n!}}$.
- III. 2) En notant p l'entier le plus proche de $\sqrt{2}n$, on a $|\sin(\sqrt{2}\pi n)| = |\sin(\sqrt{2}\pi n p\pi)| \ge \dots$

Indications Exercice 4. Comment utiliser l'hypothèse : Si on trouve deux parties de XX de cardinal |X|, elle devront avoir une intersection non vide.

Indications Exercice 5.

- 1. Exclure la possibilité que A ait une colonne nulle.
- 2. Il faut interpréter la stricte positivité des coefficients en termes de chemins sur des graphes : à A on peut associer un graphe à n sommets tel que $i \to j \Leftrightarrow A_{ij} \neq 0$. Alors $A_{ij}^k \neq 0$ si et seulement s'il existe un chemin de longueur k entre les sommets i et j.
- 3. On pourra admettre (ou démontrer) que si a_1, \ldots, a_n sont des entiers premiers entre eux dans leur ensemble, tout entier assez grand peut s'écrire comme combinaison linéaire des a_i à coefficients entiers positifs.